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Abstract 

A new species of the cheilostome bryozoan genus Bugula Oken, 1815, Bugula tsunamiensis, is described from Japan, having 
rafted across the North Pacific Ocean on numerous objects released into the ocean by the 2011 Great East Japan Earthquake and 
Tsunami, and landing in the Hawaiian Islands and on the Pacific Coast of the United States. This is the second species of the 
Bugula uniserialis Hincks, 1884 group to be reported from Japan. We elevate the Japanese species Bugula scaphoides constricta 
Yanagi and Okada, 1918 to full species status, B. constricta, based upon distinctions from the stem species. We suggest that 
Bugula uniserialis reported from the Galapagos Islands is an undescribed species. 
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Introduction 

Bryozoans are a diverse group of filter-feeding orga-
nisms well represented in a wide variety of marine 
environments and habitats, and capable of taking 
advantage of oceanic rafting objects (Winston 1982; 
Thiel and Gutow 2005; Goldstein et al. 2014). Arbo-
rescent forms appear to be particularly well-adapted 
to life on potentially space-limited rafting substrates 
(McCuller and Carlton 2018). 

The Bugulidae (Cheilostomata) are a widespread 
group of arborescent bryozoans that have recently 
undergone substantial taxonomic revision. Changes 

include: the resurrection of the genera Bugulina 
Gray, 1848 and Crisularia Gray, 1848; the description 
of the new genus Virididentula Fehlauer-Ale, Winston, 
Tilbrook, Nascimento and Vieira, 2015; and the res-
triction of the species assigned to Bugula Oken, 1815 
with a redefinition of that genus (Fehlauer-Ale et al. 
2015). Characteristics shared by all Bugula species 
include a lack of spines on the ancestrula and distal 
portion of autozooids, and an ooecium with both an 
ento- and ectooecium that is attached to the inner 
distal portion of zooids (Fehlauer-Ale et al. 2015). 
Fehlauer-Ale et al. (2015) distinguish two morpholo-
gically defined groups within Bugula sensu stricto: 
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the Bugula neritina (Linnaeus, 1758)–B. minima 
Waters, 1909 group; and the Bugula uniserialis Hincks, 
1884 group. The latter has a branching pattern with 
long proximal portions of zooids and thus appears to 
have a uniserial growth pattern. 

A number of species within the Bugulidae have 
been recorded from Japan. Species in the Bugula 
neritina-minima group include: B. minima (Okada and 
Mawatari 1938); B. neritina (Okada 1929; Mawatari 
1981); B. subglobosa Harmer, 1926 (Mawatari 1963), 
and B. vectifera Harmer, 1926 (Okada and Mawatari 
1938). The Bugula uniserialis group is represented 
by only one species, B. scaphoides constricta Yanagi 
and Okada, 1918. Species of Bugulina in Japan 
include B. californica (Robertson, 1905) (Okada and 
Mawatari 1938; Mawatari 1981; Nandakumar et al. 
1993); B. flabellata (Thompson in Gray, 1848) 
(Mawatari 1981), and B. stolonifera (Ryland, 1960) 
(Scholz et al. 2003). At least three species of Bugula 
that are considered incertae sedis were reported in 
Japan: B. hexacantha Ortmann, 1890, B. lophodendron 
Ortmann, 1890, and B. umbelliformis Yanagi and 
Okada, 1918 (Okada and Mawatari 1938) Other 
species within the Bugulidae include: Crisularia 
pacifica (Robertson, 1905) (Grischenko et al. 2007); 
Halophila johnstoniae Gray, 1843 (Ortmann 1890); 
Dendrobeania japonica (Ortmann, 1890), and 
Viridentula dentata (Lamouroux, 1816) (Okada and 
Mawatari 1937; Mawatari 1987). 

Bugula species that are widely distributed and 
that have been previously recorded as rafting include 
Bugulina flabellata, Bugula neritina, and Bugula 
minima (Stevens et al. 1996; Winston et al. 1997; 
Astudillo et al. 2009). None of these species are in 
the B. uniserialis group. 

We report here a new species of Bugula within 
the B. uniserialis group occurring on objects released 
into the North Pacific Ocean in March 2011 due to 
the Great East Japan Earthquake and Tsunami. 
These objects drifted across the ocean to the Central 
Pacific (Hawaiian Archipelago) and the Pacific coast 
of the USA. 

Materials and methods 

Bryozoan samples were obtained from JTMD 
(Japanese Tsunami Marine Debris) objects (see Carlton 
et al. 2017) landing between 2012 and 2016 in North 
America and the Hawaiian Islands. Each object was 
assigned a unique identification number preceded by 
JTMD-BF (BioFouling-number) (Supplementary material 
Table S1). 

Bryozoan specimens (received dried or in 95% etha-
nol) were loose in submitted samples or were removed 
from their substrate with a scalpel and placed in 

voucher collections. A number of colony fragments 
from BF samples intercepted in Hawaii, Oregon, and 
Washington were photographed with a Leica EZ4 
HD (Leica Microsystems, Wetzlar, Germany) and 
LAS EZ (Leica Microsystems, Wetzlar, Germany) 
imaging software, and measured using Fiji (Schindelin 
et al. 2012). For scanning electron microscopy (SEM), 
specimens were cleaned in sodium hypochlorite solu-
tion, rinsed in tap water, and then replaced in ethanol 
to prevent degradation during transport. Samples were 
then air dried and coated with Au-Pd using an Anatech 
USA Hummer 6.6 Sputtering System (Anatech, Hay-
ward, California USA) at 15mA and viewed under a 
JEOL JSM-7100FLV field emission SEM (JEOL USA 
Inc., Peabody, Massachusetts USA) at 5.0kV accele-
rating voltage. Images were retained as TIFF files. 

Specimens of Bugula from JTMD-BF-339 (Table 
S1) were removed from storage in 95% ethanol and 
rinsed in distilled water. DNA was then extracted 
from ~25 mg subsamples of colonies using the DNEasy 
blood and tissue kit (Qiagen, Venlo, Netherlands; 
Catalog No. 69504) following the manufacturer’s 
protocol. A 313 bp fragment of the cytochrome c 
oxidase subunit I (COI) mitochondrial gene was 
amplified by polymerase chain reaction (PCR) using 
primers described by Geller et al. (2013) and Leray 
et al. (2013), modified to contain T7 and T3 sequencing 
primer sequences (underlined): T3_intLCO (5'- AAT 
TAA CCC TCA CTA AAG GGG GWA CWG GWT 
GAA CWG TWT AYC CYC C -3') and T7_jgHCO 
(5'- TAA TAC GAC TCA CTA TAG GGT AIA 
CYT CIG GRT GIC CRA ARA AYC A -3'). Each 
PCR reaction consisted of 25 µL of Green GoTaq 
(Promega, Madison, Wisconsin, USA; Catalog No. 
PRM7123) master mix (400 μM dATP, 400 μM 
dGTP, 400 μM dCTP, 400 μM dTTP, and 3 mM 
MgCl2), 0.2 µM of each primer, 0.2 mg/ml BSA, and 
water to a volume of 50 µL. The PCR program was 
3 min at 94 °C followed by 30 cycles of 94 °C for  
60 sec, 47 °C for 45 sec, and 72 °C for 90 sec. PCR 
products were purified using Agencourt AMPure beads 
(Beckman Coulter, Brea, California USA; Catalog 
No. A63880) according to the manufacturer’s protocol 
and submitted to Elim Biopharmaceuticals (Hayward, 
California, USA) for dideoxy chain termination 
sequencing using T7 and T3 primers. Forward and 
reverse sequences were assembled and primer 
sequencers removed using Geneious 10.1 (Biomatters, 
Auckland, New Zealand). Novel sequences were aligned 
to representative COI from Bugula species found in 
Genbank in March 2017, and phylogenetic trees 
generated using FastTree 2.1.5 (Price et al. 2010) 
using the GTR substitution model. Genbank voucher 
specimens from JTMD-BF-339 are deposited at the 
Royal British Columbia Museum, Victoria, Canada. 
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Results 

Class Gymnolaemata Allman, 1856 
Order Cheilostomata Busk, 1852 

Family Bugulidae Gray, 1848 
Genus Bugula Oken, 1815 

Bugula tsunamiensis n. sp. 
(Figures 1–3) 

Material. JTMD-BF-23, 131, 134, 168, 196, 210, 
212, 223, 226, 240, 241, 250, 253, 254, 264, 290, 
304, 339, 352, 353, 356, 390, 398, 402, 410, 413, 
414, 415, 471, 526, 530, 531, 532, 533, 555, 578, 
626, 652, 668, 669, 670, 671, 672 (Table S1). These 
rafted objects include material washed ashore from 
Japan in Washington, Oregon, California, and Hawaii, 
between 2013 and 2016. 
Diagnosis. Recumbent to erect colonies, tan to red in 
ethanol; alternating elongate zooids (ca. 0.61 mm long 
and 0.14 mm wide) and large avicularia (ca. 0.14 mm 
long) with a length to width ratio of 1.45–1.70, attached 
by a short peduncle to a long peduncle cushion; 
zooids may have more than one radicle fiber. 
Description. Zoarium delicate, recumbent to erect, 
biserial and alternating with a uniserial appearance, 
with bifurcation type 3 (see Vieira et al. 2012), often 
curling strongly inwards distally, color tan to red in 
ethanol. Number of zooids between branch bifur-
cations is low (1–3) at proximal portions and higher 
(5–7) at distal portions of the colony. Zooids elongate 
(mean ± standard deviation; 0.61 mm ± 0.07 mm), 
opesia occupying approximately half of zooid length, 
tubular proximally and truncate distally, with a step-
like process between. Radicle fibers originate basally 
just above step-like process, often short at proximal 
portions of the colony and sometimes proximal zooecia 
have two radicles (Figure 1D); radicles often kept the 
proximal portions recumbent against the substrate. 
Avicularia monomorphic and large, with a length to 
width ratio of 1.45–1.70:1, attached by a short peduncle 
to a long peduncle cushion at the extreme proximal 
end on the outer edge of each zooid (Figure 2). Ooecia 
attached at the inner distal edge, sub-spherical, 
curved inwards (Figure 1C). No ancestrula observed. 
Remarks. A majority of specimens of this species 
were branches or branch fragments randomly distri-
buted or tangled in clumps of other arborescent 
bryozoans or hydroid stolons. In some samples, 
colonies were attached by radicles to various sub-
strates, including captured sand, foraminiferans, 
other bryozoans, or the gooseneck barnacle Lepas sp. 
A few specimens had ovicells (JTMD-BF-131, 264, 
402, 555).  

Of note is the striking intracolonial (Table S2; 
Figure 1B) and intercolonial morphological variation 

(Figure 3) of B. tsunamiensis, potentially due to the 
different routes and thus the broad sweep of environ-
mental conditions experienced, that their debris items 
took across the North Pacific Ocean. For example, 
avicularia length, zooid length and frontal membrane 
length were larger on average for specimens that 
arrived on objects intercepted on the Pacific Coast of 
the United States, and smaller for specimens on objects 
that landed in Hawaii (Figure 3). Bugula tsunamiensis 
also demonstrates the widest known range of avicularia 
size of any Bugula species. Bugula tsunamiensis 
appears to follow the “temperature-size rule” (see 
Atkinson 1994) which has been found to be closely 
followed by cheilostome bryozoans (O’Dea and 
Okamura 1999; Okamura et al. 2011). 
Phylogenetics. Sequences of 313 bp from the two 
specimens of Bugula tsunamiensis were identical, 
were 33.5% GC, and have been deposited in Genbank 
as Accession Number MF593127. A BLAST search 
against the nucleotide database at Genbank recovered 
Bugula migottoi Vieira, Winston and Fehlauer-Ale, 
2012 at 86% pairwise identity as top match. No 
other Bryozoa were in the top 100 BLAST hits, 
likely resulting from high levels of divergence seen 
in this genus (Figure 4). A maximum likelihood tree 
(Figure 4) including COI sequences of Bicellaria, 
Bugula, Bugulina, Crisularia, and Viridentula placed 
B. tsunamiensis in a strongly supported clade con-
taining species retained in the genus Bugula by 
Fehlauer-Ale et al. (2015). The phylogenetic tree 
presented here is entirely compatible with the 
combined COI and 16S rRNA tree in Fehlauer-Ale 
et al. (2015). We conclude B. tsunamiensis is distinct 
genetically from known members of Bugulidae for 
which data were available, and is contained in the 
genus Bugula. 
Etymology. The species name, which is derived 
from the Japanese word “tsunami,” memorializes the 
tragedy of the Great East Japan Earthquake and 
Tsunami of 2011. 
Type Material. Holotype deposited at the National 
Museum of Nature and Science, Tokyo, NSMT-Te 
1208 (JTMD-BF-555, identical in every respect to 
specimens shown in Figures 1 and 2; colony data for 
BF-555 shown in Table S2). Paratype deposited at the 
National Museum of Natural History, Smithsonian 
Institution, NMNH 1437663 (JTMD-BF-264). The 
holotype specimen is from the biofouling on the hull 
of the fishing vessel Daini Katsu Maru, lost from 
Ogatsu, Miyagi Prefecture, on March 11, 2011, and 
washing ashore at Alan Davis Beach, O‘ahu, on April 
22, 2015. The Daini Katsu Maru was returned to 
Japan aboard the Japanese training vessel Miyagi 
Maru in March 2016 to be part of a memorial 
exhibit. 
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Figure 1. Bugula tsunamiensis new species. (A) colony, JTMD-BF-131, (B) colony showing wide range in avicularia sizes, JTMD-BF-168; 
(C) colony fragment with ovicells, JTMD-BF-264; (D) basal side, internode bifurcation point, and zooids with two rhizoids, JTMD-BF-210. 
Microphotographs by Megan I. McCuller.

Figure 2. Avicularia of Bugula tsunamiensis new species, JTMD-BF-168. Microphotographs by Megan I. McCuller. 
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Figure 3. Mean measurements of 
Bugula tsunamiensis new species 
morphological characters by object 
intercept location. Zooid length (ZL) and 
width (ZW), frontal membrane length 
(FML), avicularia length (AvL) and 
width (AvW), and ovicell width (OvW). 
Error bars represent standard deviations 
of measurements of specimens noted in 
Table S2. HI, Hawaii; OR, Oregon; WA, 
Washington.

Figure 4. FastTree 2.1.5 maximum likelihood COI phylogeny for Bugula tsunamiensis and closely related Bugulidae. Members of the genus 
Bicellaria were included as an outgroup to root the tree. Support values (proportion of 1000 trees) were generated by resampling the data 
with 1000 replicates. The scale bar indicates branch length in number of substitutions per site. Genbank accession numbers are given after 
species names; however nomenclature follows Fehlauer-Ale et al. (2015) rather than sequence authors.
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Type Locality. According to Article 76.1.1 of the 
International Code of Zoological Nomenclature (Inter-
national Commission on Zoological Nomenclature, 
1999), “If capture or collection occurred after transport 
by artificial means, the type locality is the place 
from which the name-bearing type, or its wild 
progenitor, began its unnatural journey”. At this time 
we are only able to designate a relatively broad 
region, Honshu, Japan, as the type locality. 
New Species Registration. The electronic pdf version 
of this article represents a published work under the 
codes of the International Commission on Zoological 
Nomenclature (ICZN). The online version of this 
article is archived and available from digital repo-
sitories. The new species name in the electronic 
version thus constitutes publication under the ICZN 
codes based upon the electronic edition alone. This 
work and the species name have been registered in 
ZooBank, the ICZN online registration. 

Publication LSID: urn:lsid:zoobank.org:pub:DA36 
E402-4A4A-4F57-AEE2-32F585CFC6C0 

Species name: urn:lsid:zoobank.org:act:E9C17D 
86-AB13-4840-8FCB-BCA545474264 

Discussion 

Species morphologically similar to Bugula 
tsunamiensis 

Bugula tsunamiensis is a member of the B. uniserialis 
group (see Vieira et al. 2012; Fehlauer-Ale et al. 2015). 
Only one member of the Bugula uniserialis-group 
has been previously reported from Japan, Bugula 
constricta. Here, we elevate B. constricta to full species 
status from Bugula scaphoides constricta based upon 
a distinctive indentation at the base of the zooecial 
outer later wall and “the shorter spinous process at 
the outer angle of [the] zooecial aperture” (Yanagi 
and Okada 1918), characters not found in the Indo-
West Pacific Bugula scaphoides Kirkpatrick, 1890. 
Bugula constricta is a deep water species collected 
from Sagami Bay, central Honshu, in 620 meters 
(Yanagi and Okada 1918); it apparently has not been 
found again. Bugula constricta differs from B. 
tsunamiensis by the former’s small avicularia and 
ovicells with reticulated pattern (characters also 
shared with B. scaphoides). 

Bugula scaphula Tilbrook, Hayward, and Gordon, 
2001 from Vanuatu differs from B. tsunamiensis in 
having globular ovicells, smaller zooids (about 
0.45 mm long and 0.15 mm wide), and smaller, more 
elongate avicularia (about 0.125 mm long and 
0.074 mm wide). Bugula rochae Vieira, Winston and 
Fehlauer-Ale, 2012 from Brazil, noted below, has more 

compact, distinctly smaller avicularia with a stronger 
hook to the rostrum, as well as smaller ovicells. 

Several new species of Bugula in the uniserialis 
group were described by Vieira et al. (2012). Bugula 
tsunamiensis overlaps in measurements in a number of 
characters with several of these species, particularly 
in terms of avicularia length; B. tsunamiensis posses-
ses avicularia which may approach the small avicularia 
size of Bugula gnoma Vieira, Winston and Fehlauer-
Ale, 2012, or which are as large (and larger) as those 
of Bugula biota Vieira, Winston and Fehlauer-Ale, 
2012. The only species that grows in a recumbent 
fashion is B. gnoma,  but that species has smaller 
avicularia on average (0.076 mm) than the smallest 
avicularia of B. tsunamiensis (0.083 mm) (Vieira et 
al. 2012). Both Bugula ingens Vieira, Winston and 
Fehlauer-Ale, 2012 and B. rochae have avicularia 
with a cuspidate peduncle, absent in B. tsunamiensis. 
Additionally, B. rochae has a small peduncle cushion 
as compared to the long cushion of B. tsunamiensis 
and the length to width ratio of the avicularia of B. 
ingens is smaller (1.3–1.55:1) than that of our new 
species (1.45–1.70:1). Bugula tsunamiensis is most 
similar to B. biota, but the former has a long peduncle 
cushion, recumbent growth, and lacks the abfrontal 
V-shaped indentation on the avicularia. 

Bugula tsunamiensis bears some similarity (L. M. 
Vieira, personal communication, 2017) to Bugula 
pedunculata O’Donoghue, 1925 (Vieira et al. 2012). 
Bugula pedunculata was described from specimens 
from “rocks” (likely intertidal) in La Jolla in San Diego, 
California, near the Scripps Institution of Oceano-
graphy. It has not been reported since its original 
description. Between 1925 and 1928, O’Donoghue 
loaned a specimen of B. pedunculata to Anna B. 

Hastings, who synonymized it with Bugula 
uniserialis (Hastings, 1930). Bugula uniserialis had 
been described from “weed” from “Western Australia”, 
without any further location details (Vieira et al.’s 
(2012) remark that Hastings synonymized B. 
pedunculata with B. minima is in error). The name 
Bugula uniserialis has been applied since to many 
populations around the world, but is now recognized 
as a global species complex (Vieira et al. 2012). 
Hastings (1930) believed O’Donoghue’s La Jolla 
material to be similar to specimens she identified as 
B. uniserialis from the Galapagos Islands; no 
additional specimens identified as B. uniserialis have 
been noted since Hasting’s report. We suggest here 
that the latter may represent an undescribed species, 
unless the Eastern Pacific name B. pedunculata 
would apply to those populations as well. 

Based upon O’Donoghue’s description and two 
line drawings (O’Donoghue 1925), which are 
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unaccompanied by measurements, B. pedunculata is 
a distinct, albeit related species to B. tsunamiensis. 
Bugula pedunculata has smaller avicularia, more 
elongate ovicells, and is less branched than B. 
tsunamiensis. Further, B. tsunamiensis lacks the thin, 
distinctive peduncle on the ooecium that inspired 
O’Donoghue’s name. We have attempted to locate 
O’Donoghue’s specimens of B. pedunculata, which 
were loaned to O’Donoghue by Trevor Kincaid of 
the University of Washington (Seattle, Washington, 
USA). At the time Charles O’Donoghue described 
B. pedunculata, he was at the University of Manitoba 
(Winnipeg, Manitoba, Canada), but later moved to 
the University of Reading (Berkshire, England). 
Anna Hastings (to whom O’Donoghue loaned material, 
as noted above) was based at the Natural History 
Museum in London (England). None of these four 
institutions have O’Donoghue’s or any other material 
of B. pedunculata (Melissa Frey, Burke Museum, 
University of Washington, Seattle, Washington USA; 
Alan Kohn, Department of Biology, University of 
Washington Seattle, Washington USA; Brenda Hann, 
University of Manitoba, Winnipeg, Manitoba, Canada; 
Amanda Callaghan (University of Reading, Berkshire, 
England), and Mary Spencer Jones, Natural History 
Museum, London, England, personal communications). 

Phylogenetic relationships of Bugula tsunamiensis 

Of the species closely grouping phylogenetically with 
B. tsunamiensis (Figure 4: B. migottoi, B. neritina, B. 
rochae, B. subglobosa Harmer, 1926, and Crisularia 
cucullata (Busk, 1867), only B. rochae (discussed 
above) is in the B. uniserialis group. While the Bugula 
clade in Figure 4 is highly supported, the relation-
ships of species within the clade are less certain. 
Thus it is plausible that B. tsunamiensis has a closer 
relationship to B. rochae than is suggested in Figure 4, 
or the uniserial appearance is evolutionarily labile. 

Temporal patterns of arrival and possible 
biogeographic origins 

Bugula tsunamiensis appeared on only two objects 
in 2013, but 41 times between 2014 and 2016; thus, 
approximately 95% of populations arrived in later 
years, suggesting that these objects took a longer 
path around the North Pacific Ocean.  Fifteen of these 
objects (35%) also bore warm-water if not subtropical 
species that were acquired in post-tsunami southern 
ocean transit routes (Carlton et al. 2017). Thus while 
B. tsunamiensis may be native to the Tohoku region, 
it may be more common in warmer waters south of 
the Boso Peninsula. 

Although B. tsunamiensis represents one of the 
more common bryozoan species on JTMD (McCuller 
and Carlton 2018), it is a delicate and somewhat 
inconspicuous species that may be easily overlooked. 
We note that there are few studies of the marine 
cheilostome Bryozoa of the Tohoku coast (Okada 
1929; Okada and Mawatari 1937; Mawatari 1948; 
also see Hirose 2017), with only one study of the 
bryozoans from the Iwate Prefecture (Hirose et al. 
2012), and none from Miyagi Prefecture. A majority 
of the bryozoan work in Japan has been focused on 
Hokkaido, middle and southern Honshu (Sagami 
Bay and Kii Peninsula), and the southern islands of 
Japan (Shikoku, Kyushu, and the Nansei Islands) 
(Grischenko et al. 2007, and summaries in Hirose 
2017), but there are no similar species reported in 
those studies. 

Designation of type location 

In close concert with this new species of Bugula 
having been recovered to date only from rafted 
objects, West et al. (2016) have described a new red 
algal genus and species, Tsunamia transpacifica, 
also known only from Japanese tsunami marine 
debris. We share the conundrum with authors since 
the early 1800s of first discovering undescribed 
species from either their means of conveyance or in 
regions to where they were conveyed (Carlton 2009). 
Lesueur (1823) described the ascidian Styela plicata 
from the hull of a vessel in the harbor of Philadelphia 
(Pennsylvania, USA); it is now known to be a 
Western Pacific species. At least three species of 
barnacles remain known only from ships’ hulls 
(Newman and Ross 1976), and shipworm (teredinid 
bivalve) species were regularly first described in the 
19th century from wooden ships far from the original 
homes of the species concerned (Turner 1966). Faubel 
and Gollasch (1996) described a marine flatworm, 
Cryptostylochus hullensis, from the fouling community 
on the hull of an automobile carrier that had arrived 
in the Port of Bremerhaven, Germany; they speculated 
that the species may have come from a distant warm-
water port. Similarly, a long list of allochthonous 
freshwater and terrestrial invertebrates were first 
described from (and with type localities as) European 
greenhouses and botanical gardens (Lankester 1880; 
Lincoln 1979; Taiti and Ferrara 1991; Moore and 
Gibson 1985). 

We suggest that B. tsunamiensis settled in nearshore 
waters of the Northwest Pacific Ocean on the vessels 
and other items sent to sea by the tsunami, and not 
after the arrival of these same objects in the 
Northeast Pacific. No similar species has been 
described from the Pacific coast of North America, 
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amongst a fairly well-known bryozoan fauna. 
Further, no adult invertebrates known solely from 
the Pacific coast of North America or Hawaii were 
on any of the objects (Table S1) that supported B. 
tsunamiensis (Carlton et al. 2017). It would appear 
unlikely that the sole species to do so would be a 
bryozoan whose life history includes non-feeding 
larvae of only a few hours (if that) duration in the 
water column, and thus not likely to colonize objects 
in open ocean waters. 

We predict that B. tsunamiensis will be found in 
biofouling communities of Honshu, Japan, if not spe-
cifically in Miyagi and Iwate Prefectures (Table S1). 
More extensive work, similar to that of Vieira et al. 
(2012) in the Southwestern Atlantic Ocean, is needed 
to understand the diversity of Bugulidae in the 
Northwest Pacific Ocean. 
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