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Marine anthropogenic debris drifting along coastlines 
and across oceans with living species aboard 
(Kiessling et al. 2015; Rech et al. 2016; Carlton et 
al. 2017) now adds to the increasing list of human-
mediated vectors transporting species across biogeo-
graphic barriers (Yeo et al. 2010; Williams et al. 
2013; Grosholz et al. 2015; Fowler et al. 2016). This 
global bioflow may be further exacerbated by 
anthropogenic climate change, opening up new 
biogeographic regions previously inhospitable to 
warmer-water species (Doney et al. 2012; Bates et 
al. 2014; Canning-Clode and Carlton 2017). Climate 
change may also increase the frequency and magni-
tude of storm activity capable of washing the immense 
amounts of plastic material now poised on the edges 
of the world’s coastlines into the sea (Carlton et al. 
2017). In short, a combination of increasing vector 
diversity and changing climate sets the stage for a 
new era of invasions in the world’s oceans. 

The potential for colonization of North America 
and the Hawaiian Islands by species transported on 
Japanese tsunami marine debris (JTMD) is one of 
the most consistently posed questions since the first 

landfall in 2012 in Oregon of a huge fisheries dock 
torn away by the tsunami from the Port of Misawa 
on Honshu’s Tōhoku coast (Carlton et al. 2018). 
While new populations of non-native species may 
take years to grow to the point of detection—a phe-
nomenon known as invasion lag-time—we touch 
here upon a related challenge to addressing this 
question: that even as the number of species being 
transported increases, there is an ever-decreasing 
ability, as we argue below, to recognize alien species 
in the sea. This widening gap may delay and impair 
our understanding of changes to marine biodiversity 
and the resulting ecological, economic, evolutionary, 
and other impacts. 

Wasson et al. (2000) noted that, “Detection of 
recent invasions of new regions by species from 
elsewhere is straightforward only for taxa for which 
there are accurate systematic descriptions and exten-
sive and reliable historical records of distributions.” 
They further argued that only a few marine groups 
(such as brachyuran decapods (crabs), gastropod 
mollusks (snails) and asteroid echinoderms (sea stars)) 
satisfy this formula. Among marine invertebrates 
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(whether introduced or native) this thus leaves a 
staggering array of prominent—but often smaller-
bodied and taxonomically-challenging—taxa all but 
unmonitored on coastlines around the world. Notably 
also under-reported are parasites, which often are 
similarly difficult to detect, cryptic, and likewise 
taxonomically challenging. As with free-living 
species, introductions of non-native parasites in 
marine ecosystems have led to major impacts on 
populations and communities (Blakeslee et al. 2013). 
When these smaller marine invertebrates are reported 
as novel introductions to a location or region, they 
are often one of only a few species being monitored 
in the entire class or phylum by the marine biological 
science community. Critically, all of these under-
represented taxa are documented as being transported 
by a wide range of anthropogenic vectors (Table 1, 
taxa in boldface). Not surprisingly, the invertebrate 
taxa detected on JTMD mirror this pattern (Table 1). 

In addition to invertebrates, algae are of course 
also transported globally, often attached to ships' 
hulls, rafting structures or as packing material for 
several vectors (Fowler et al. 2016; Hanyuda et al. 
2017).  Non-native algae can contribute substantially 
to the species richness of introduced communities, 
altering community structure. However, globally, 
almost 40% of algal species remain undescribed, 
further hindering the ability to accurately document 
species invasions (Guiry 2012). 

While modern techniques of biodiversity assess-
ment, such as genetic sequencing of individual 
specimens, targeted searches for individual species 
with eDNA, or metagenomic analyses of community 
samples, can assist in the identification and thus 
detection of species, the fundamental need for 
traditional morphological taxonomy (ideally com-
bined with molecular approaches) remains largely 
unchanged, nearly 20 years after Wasson et al.’s 
(2000) assessment—and 65 years after Hedgpeth et 
al.’s (1953) call to arms. As Carlton et al. (2017) 
note, and as demonstrated by the contributions to this 
Special Issue, 80 systematists and other scientists 
from around the world were required to resolve only 
a portion of the fauna recovered from JTMD. 

Detection of changes in marine biodiversity 
requires detailed and time-sensitive assessments 
across a broad suite of benthic communities 
(including rocky shores, soft-bottoms, salt marshes, 
and biofouling assemblages) and plankton and 
nektonic communities. All such surveys require 
sufficient funding not only for the appropriate levels 
of repeated field sampling (both spatially and 
temporally), but also for the recruitment of taxo-
nomic specialists trained in both morphological and 
genetic techniques. The scientists who contributed to 

a knowledge of JTMD biodiversity worked mostly 
on a voluntary basis, a situation which would not be 
expected (nor even possible in the absence of equip-
ment and supplies) of those doing broad spatial scale 
biodiversity sampling.  

It is clear that the vast majority of taxonomic 
groups are bereft of widely-available taxonomic 
expertise and are thus typically under-reported as 
invasions (Table 1). New occurrences of introduced 
species in these and other groups on the Pacific coast 
of North America and in Hawaii may thus go 
undetected and, of course, this applies to any inter-
regional species transfers on a world-wide basis. 
That these lesser known taxa have led to significant 
ecological, environmental, and economic impacts as 
invaders is well-known and long documented (Rilov 
and Crooks 2009), and yet the number of skilled 
taxonomic experts for aquatic taxa continues to wane 
in many global regions, with institutional support 
similarly disappearing even in those institutions 
(such as museums) dedicated to the study of taxo-
nomy and biodiversity. 

The answer then, to one of the most common 
questions relative to JTMD—will new invasions by 
exotic species occur, or have they occurred already? 
—is yes, perhaps, but how many of them will we be 
able to detect? An enduring assumption among the 
public and press, as well as in the political world, is 
that “marine biologists” are in a position to answer 
this question, based upon the presumption that the 
scientific community has their “finger on the pulse” 
of changes in marine biodiversity, especially in 
accessible intertidal and nearshore waters. But, save 
for the invasion of larger-bodied and relatively 
abundant species, such knowledge for most groups 
would require an infusion of dedicated, and stable, 
funding of field surveys (and the supporting laboratory 
work), as well as the non-optional funding to greatly 
increase the number of experts trained and qualified 
to identify species that do not fall into the iconic, 
charismatic, commercially, or recreationally important 
categories. Of the 80 scientists who contributed to the 
JTMD program, only five live and work in North 
America and Hawaii (where the JTMD arrived) and 
are employed full-time as professional systematic 
zoologists. 

Marine dispersal ecology is an increasingly fluid 
field of research. While dispersal of life in the sea 
has long been viewed as an overwhelmingly natural 
process, striking shifts in the diversity and efficacy 
of anthropogenic vectors in modern time have altered 
the distribution of many thousands of marine species. 
The stage appears to be set for this phenomenon to con-
tinue and grow. We strongly echo Pysek et al. (2013), 
who have eloquently argued—relative to terrestrial 
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Table 1. Examples of marine invertebrates and fish transported by selected anthropogenic vectors. 

Marine Faunal Taxa Vectors 

Boldface: Examples of groups that are globally 
under-reported as invasions (Wasson et al. 
2000; Carlton 2003, 2009; Carlton and Eldredge 
2009, 2015; Mead et al. 2011a, 2011b) 

Vessels: Fisheries: Rafting: 

Ballast water 
and sediments 

Sea chests 
Semi-

submersible 
platforms 

Seaweed as 
baitworm 
dunnage 

Marine debris 

Gollasch et al. 
2002; NRC 

2011 

Coutts and 
Dodgshun 

2007; Frey et 
al. 2014 

Wanless et al. 
2010; Hopkins 

and Forrest 
2010; Yeo et 

al. 2010 

Miller 1969; 
Haska et al. 2012; 

Cohen 2012; 
Fowler et al. 

2016 

Carlton et al. 
2017 

 Group Common Name  
PORIFERA sponges (1) x x x x 
CNIDARIA 
Hydrozoa hydroids x x x x x 
Anthozoa: Actiniaria sea anemones x x x x x 
PLATYHELMINTHES flatworms x x x x x 
NEMERTEA ribbon worms x x x x x 
NEMATODA round worms x x x x x 
KAMPTOZOA nodding heads * x x  x 
ANNELIDA 
Sipuncula peanut worms * x x  x 
Oligochaeta oligochaete worms x x x x x 
Polychaeta polychaete worms x x x x x 
ARTHROPODA 
Ostracoda ostracods x * x x x 
Copepoda copepods x x x x x 
Cirripedia barnacles x x x x x 
Mysidacea opossum shrimp x x  x  
Isopoda isopods x x x x x 
Tanaidacea tanaids x x x x x 
Amphipoda amphipods x x x x x 
Decapoda: Brachyura crabs x x x x x 
Decapoda: Caridea shrimp x x x   
Pycnogonida sea spiders * x x  x 
Arachnida mites x x x x x 
Insecta insects x x x x x 
MOLLUSCA 
Gastropoda snails x x x x x 

Bivalvia 
clams, mussels, 
oysters, scallops 

x x x x x 

BRYOZOA moss animals x x x x x 
ECHINODERMATA 
Asteroidea sea stars x x x x x 
Ophiuroidea brittle stars x  x  x 
CHORDATA 
Ascidiacea sea squirts x x x  x 
Pisces fish x x x  x 

(1) Kipp et al. (2010) and Briski et al. (2011) report freshwater sponges in ballast water and sediments. 
* Taxa relatively difficult to detect due to their small size, or to their presence as larvae, and thus likely overlooked. 
 

plant invasions—that taxonomic resources are 
indispensable ingredients for the effective detection 
and management of biological invasions, and that the 
time is now here for a “resurgence and reinvestment” 
in 21st century taxonomy. We believe their arguments 
apply equally and fully to the marine environment, 
in an ocean now abounding with the human-mediated 
means to instantaneously move almost any species 
around the world in a matter of days if not hours. 

Under-reporting of introduced species, due to a 
dearth of surveys and lack of taxonomic expertise, 
especially relative to under-studied groups, under-
mines key aspects of the management of species and 
ecosystems impacted by non-natives, including early 
detection of introduced species and rapid response. 
Without support for these fundamental biodiversity 
assessment resources, our ability to document new 
invasions will continue to decline, and we may thus 
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be unable to describe how marine communities are 
responding to such invasions and what the conse-
quences will be to the environment and human 
welfare, until economic, social, or health impacts 
become politically problematic. 
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